helix/helix-stdx/src/rope.rs

861 lines
31 KiB
Rust
Raw Normal View History

use std::fmt;
2024-02-26 15:45:20 +08:00
use std::ops::{Bound, RangeBounds};
pub use regex_cursor::engines::meta::{Builder as RegexBuilder, Regex};
pub use regex_cursor::regex_automata::util::syntax::Config;
use regex_cursor::{Input as RegexInput, RopeyCursor};
use ropey::iter::Chunks;
use ropey::RopeSlice;
use unicode_segmentation::{GraphemeCursor, GraphemeIncomplete};
2024-02-26 15:45:20 +08:00
pub trait RopeSliceExt<'a>: Sized {
fn ends_with(self, text: &str) -> bool;
fn starts_with(self, text: &str) -> bool;
2024-02-26 15:45:20 +08:00
fn regex_input(self) -> RegexInput<RopeyCursor<'a>>;
fn regex_input_at_bytes<R: RangeBounds<usize>>(
self,
byte_range: R,
) -> RegexInput<RopeyCursor<'a>>;
fn regex_input_at<R: RangeBounds<usize>>(self, char_range: R) -> RegexInput<RopeyCursor<'a>>;
2024-02-27 21:36:25 +08:00
fn first_non_whitespace_char(self) -> Option<usize>;
fn last_non_whitespace_char(self) -> Option<usize>;
/// Finds the closest byte index not exceeding `byte_idx` which lies on a character boundary.
///
/// If `byte_idx` already lies on a character boundary then it is returned as-is. When
/// `byte_idx` lies between two character boundaries, this function returns the byte index of
/// the lesser / earlier / left-hand-side boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("⌚"); // three bytes: e2 8c 9a
/// assert_eq!(text.floor_char_boundary(0), 0);
/// assert_eq!(text.floor_char_boundary(1), 0);
/// assert_eq!(text.floor_char_boundary(2), 0);
/// assert_eq!(text.floor_char_boundary(3), 3);
/// ```
fn floor_char_boundary(self, byte_idx: usize) -> usize;
/// Finds the closest byte index not below `byte_idx` which lies on a character boundary.
///
/// If `byte_idx` already lies on a character boundary then it is returned as-is. When
/// `byte_idx` lies between two character boundaries, this function returns the byte index of
/// the greater / later / right-hand-side boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("⌚"); // three bytes: e2 8c 9a
/// assert_eq!(text.ceil_char_boundary(0), 0);
/// assert_eq!(text.ceil_char_boundary(1), 3);
/// assert_eq!(text.ceil_char_boundary(2), 3);
/// assert_eq!(text.ceil_char_boundary(3), 3);
/// ```
fn ceil_char_boundary(self, byte_idx: usize) -> usize;
/// Checks whether the given `byte_idx` lies on a character boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("⌚"); // three bytes: e2 8c 9a
/// assert!(text.is_char_boundary(0));
/// assert!(!text.is_char_boundary(1));
/// assert!(!text.is_char_boundary(2));
/// assert!(text.is_char_boundary(3));
/// ```
#[allow(clippy::wrong_self_convention)]
fn is_char_boundary(self, byte_idx: usize) -> bool;
/// Finds the closest byte index not exceeding `byte_idx` which lies on a grapheme cluster
/// boundary.
///
/// If `byte_idx` already lies on a grapheme cluster boundary then it is returned as-is. When
/// `byte_idx` lies between two grapheme cluster boundaries, this function returns the byte
/// index of the lesser / earlier / left-hand-side boundary.
///
/// `byte_idx` does not need to be aligned to a character boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("\r\n"); // U+000D U+000A, hex: 0d 0a
/// assert_eq!(text.floor_grapheme_boundary(0), 0);
/// assert_eq!(text.floor_grapheme_boundary(1), 0);
/// assert_eq!(text.floor_grapheme_boundary(2), 2);
/// ```
fn floor_grapheme_boundary(self, byte_idx: usize) -> usize;
/// Finds the closest byte index not exceeding `byte_idx` which lies on a grapheme cluster
/// boundary.
///
/// If `byte_idx` already lies on a grapheme cluster boundary then it is returned as-is. When
/// `byte_idx` lies between two grapheme cluster boundaries, this function returns the byte
/// index of the greater / later / right-hand-side boundary.
///
/// `byte_idx` does not need to be aligned to a character boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("\r\n"); // U+000D U+000A, hex: 0d 0a
/// assert_eq!(text.ceil_grapheme_boundary(0), 0);
/// assert_eq!(text.ceil_grapheme_boundary(1), 2);
/// assert_eq!(text.ceil_grapheme_boundary(2), 2);
/// ```
fn ceil_grapheme_boundary(self, byte_idx: usize) -> usize;
/// Checks whether the `byte_idx` lies on a grapheme cluster boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("\r\n"); // U+000D U+000A, hex: 0d 0a
/// assert!(text.is_grapheme_boundary(0));
/// assert!(!text.is_grapheme_boundary(1));
/// assert!(text.is_grapheme_boundary(2));
/// ```
#[allow(clippy::wrong_self_convention)]
fn is_grapheme_boundary(self, byte_idx: usize) -> bool;
/// Returns an iterator over the grapheme clusters in the slice.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("😶‍🌫️🏴‍☠️🖼️");
/// let graphemes: Vec<_> = text.graphemes().collect();
/// assert_eq!(graphemes.as_slice(), &["😶‍🌫️", "🏴‍☠️", "🖼️"]);
/// ```
fn graphemes(self) -> RopeGraphemes<'a> {
self.graphemes_at(0)
}
/// Returns an iterator over the grapheme clusters in the slice, reversed.
///
/// The returned iterator starts at the end of the slice and ends at the beginning of the
/// slice.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("😶‍🌫️🏴‍☠️🖼️");
/// let graphemes: Vec<_> = text.graphemes_rev().collect();
/// assert_eq!(graphemes.as_slice(), &["🖼️", "🏴‍☠️", "😶‍🌫️"]);
/// ```
fn graphemes_rev(self) -> RopeGraphemes<'a>;
/// Returns an iterator over the grapheme clusters in the slice at the given byte index.
///
/// # Example
///
/// ```
/// # use ropey::Rope;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = Rope::from_str("😶‍🌫️🏴‍☠️🖼️");
/// // 14 is the byte index of the pirate flag's starting cluster boundary.
/// let graphemes: Vec<_> = text.slice(..).graphemes_at(14).collect();
/// assert_eq!(graphemes.as_slice(), &["🏴‍☠️", "🖼️"]);
/// // 27 is the byte index of the pirate flag's ending cluster boundary.
/// let graphemes: Vec<_> = text.slice(..).graphemes_at(27).reversed().collect();
/// assert_eq!(graphemes.as_slice(), &["🏴‍☠️", "😶‍🌫️"]);
/// ```
fn graphemes_at(self, byte_idx: usize) -> RopeGraphemes<'a>;
/// Returns an iterator over the grapheme clusters in a rope and the byte index where each
/// grapheme cluster starts.
///
/// # Example
///
/// ```
/// # use ropey::Rope;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = Rope::from_str("😶‍🌫️🏴‍☠️🖼️");
/// let slice = text.slice(..);
/// let graphemes: Vec<_> = slice.grapheme_indices_at(0).collect();
/// assert_eq!(
/// graphemes.as_slice(),
/// &[(0, "😶‍🌫️".into()), (14, "🏴‍☠️".into()), (27, "🖼️".into())]
/// );
/// let graphemes: Vec<_> = slice.grapheme_indices_at(slice.len_bytes()).reversed().collect();
/// assert_eq!(
/// graphemes.as_slice(),
/// &[(27, "🖼️".into()), (14, "🏴‍☠️".into()), (0, "😶‍🌫️".into())]
/// );
/// ```
fn grapheme_indices_at(self, byte_idx: usize) -> RopeGraphemeIndices<'a>;
/// Finds the byte index of the next grapheme boundary after `byte_idx`.
///
/// If the byte index lies on the last grapheme cluster in the slice then this function
/// returns `RopeSlice::len_bytes`.
///
/// # Example
///
/// ```
/// # use ropey::Rope;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = Rope::from_str("😶‍🌫️🏴‍☠️🖼️");
/// let slice = text.slice(..);
/// let mut byte_idx = 0;
/// assert_eq!(slice.graphemes_at(byte_idx).next(), Some("😶‍🌫️".into()));
/// byte_idx = slice.next_grapheme_boundary(byte_idx);
/// assert_eq!(slice.graphemes_at(byte_idx).next(), Some("🏴‍☠️".into()));
///
/// // If `byte_idx` does not lie on a character or grapheme boundary then this function is
/// // functionally the same as `ceil_grapheme_boundary`.
/// assert_eq!(slice.next_grapheme_boundary(byte_idx - 1), byte_idx);
/// assert_eq!(slice.next_grapheme_boundary(byte_idx - 2), byte_idx);
/// assert_eq!(slice.next_grapheme_boundary(byte_idx + 1), slice.next_grapheme_boundary(byte_idx));
/// assert_eq!(slice.next_grapheme_boundary(byte_idx + 2), slice.next_grapheme_boundary(byte_idx));
///
/// byte_idx = slice.next_grapheme_boundary(byte_idx);
/// assert_eq!(slice.graphemes_at(byte_idx).next(), Some("🖼️".into()));
/// byte_idx = slice.next_grapheme_boundary(byte_idx);
/// assert_eq!(slice.graphemes_at(byte_idx).next(), None);
/// assert_eq!(byte_idx, slice.len_bytes());
/// ```
fn next_grapheme_boundary(self, byte_idx: usize) -> usize {
self.nth_next_grapheme_boundary(byte_idx, 1)
}
/// Finds the byte index of the `n`th grapheme cluster after the given `byte_idx`.
///
/// If there are fewer than `n` grapheme clusters after `byte_idx` in the rope then this
/// function returns `RopeSlice::len_bytes`.
///
/// This is functionally equivalent to calling `next_grapheme_boundary` `n` times but is more
/// efficient.
fn nth_next_grapheme_boundary(self, byte_idx: usize, n: usize) -> usize;
/// Finds the byte index of the previous grapheme boundary before `byte_idx`.
///
/// If the byte index lies on the first grapheme cluster in the slice then this function
/// returns zero.
///
/// # Example
///
/// ```
/// # use ropey::Rope;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = Rope::from_str("😶‍🌫️🏴‍☠️🖼️");
/// let slice = text.slice(..);
/// let mut byte_idx = text.len_bytes();
/// assert_eq!(slice.graphemes_at(byte_idx).prev(), Some("🖼️".into()));
/// byte_idx = slice.prev_grapheme_boundary(byte_idx);
/// assert_eq!(slice.graphemes_at(byte_idx).prev(), Some("🏴‍☠️".into()));
///
/// // If `byte_idx` does not lie on a character or grapheme boundary then this function is
/// // functionally the same as `floor_grapheme_boundary`.
/// assert_eq!(slice.prev_grapheme_boundary(byte_idx + 1), byte_idx);
/// assert_eq!(slice.prev_grapheme_boundary(byte_idx + 2), byte_idx);
/// assert_eq!(slice.prev_grapheme_boundary(byte_idx - 1), slice.prev_grapheme_boundary(byte_idx));
/// assert_eq!(slice.prev_grapheme_boundary(byte_idx - 2), slice.prev_grapheme_boundary(byte_idx));
///
/// byte_idx = slice.prev_grapheme_boundary(byte_idx);
/// assert_eq!(slice.graphemes_at(byte_idx).prev(), Some("😶‍🌫️".into()));
/// byte_idx = slice.prev_grapheme_boundary(byte_idx);
/// assert_eq!(slice.graphemes_at(byte_idx).prev(), None);
/// assert_eq!(byte_idx, 0);
/// ```
fn prev_grapheme_boundary(self, byte_idx: usize) -> usize {
self.nth_prev_grapheme_boundary(byte_idx, 1)
}
/// Finds the byte index of the `n`th grapheme cluster before the given `byte_idx`.
///
/// If there are fewer than `n` grapheme clusters before `byte_idx` in the rope then this
/// function returns zero.
///
/// This is functionally equivalent to calling `prev_grapheme_boundary` `n` times but is more
/// efficient.
fn nth_prev_grapheme_boundary(self, byte_idx: usize, n: usize) -> usize;
}
2024-02-26 15:45:20 +08:00
impl<'a> RopeSliceExt<'a> for RopeSlice<'a> {
fn ends_with(self, text: &str) -> bool {
let len = self.len_bytes();
if len < text.len() {
return false;
}
self.get_byte_slice(len - text.len()..)
2025-01-10 01:02:21 +08:00
.is_some_and(|end| end == text)
}
fn starts_with(self, text: &str) -> bool {
let len = self.len_bytes();
if len < text.len() {
return false;
}
self.get_byte_slice(..text.len())
2025-01-10 01:02:21 +08:00
.is_some_and(|start| start == text)
}
2024-02-26 15:45:20 +08:00
fn regex_input(self) -> RegexInput<RopeyCursor<'a>> {
RegexInput::new(self)
}
fn regex_input_at<R: RangeBounds<usize>>(self, char_range: R) -> RegexInput<RopeyCursor<'a>> {
let start_bound = match char_range.start_bound() {
Bound::Included(&val) => Bound::Included(self.char_to_byte(val)),
Bound::Excluded(&val) => Bound::Excluded(self.char_to_byte(val)),
Bound::Unbounded => Bound::Unbounded,
};
let end_bound = match char_range.end_bound() {
Bound::Included(&val) => Bound::Included(self.char_to_byte(val)),
Bound::Excluded(&val) => Bound::Excluded(self.char_to_byte(val)),
Bound::Unbounded => Bound::Unbounded,
};
self.regex_input_at_bytes((start_bound, end_bound))
}
fn regex_input_at_bytes<R: RangeBounds<usize>>(
self,
byte_range: R,
) -> RegexInput<RopeyCursor<'a>> {
let input = match byte_range.start_bound() {
Bound::Included(&pos) | Bound::Excluded(&pos) => {
RegexInput::new(RopeyCursor::at(self, pos))
}
Bound::Unbounded => RegexInput::new(self),
};
input.range(byte_range)
}
2024-02-27 21:36:25 +08:00
fn first_non_whitespace_char(self) -> Option<usize> {
self.chars().position(|ch| !ch.is_whitespace())
}
fn last_non_whitespace_char(self) -> Option<usize> {
self.chars_at(self.len_chars())
.reversed()
.position(|ch| !ch.is_whitespace())
.map(|pos| self.len_chars() - pos - 1)
}
// These three are adapted from std:
fn floor_char_boundary(self, byte_idx: usize) -> usize {
if byte_idx >= self.len_bytes() {
self.len_bytes()
} else {
let offset = self
.bytes_at(byte_idx + 1)
.reversed()
.take(4)
.position(is_utf8_char_boundary)
// A char can only be four bytes long so we are guaranteed to find a boundary.
.unwrap();
byte_idx - offset
}
}
fn ceil_char_boundary(self, byte_idx: usize) -> usize {
if byte_idx > self.len_bytes() {
self.len_bytes()
} else {
let upper_bound = self.len_bytes().min(byte_idx + 4);
self.bytes_at(byte_idx)
.position(is_utf8_char_boundary)
.map_or(upper_bound, |pos| pos + byte_idx)
}
}
fn is_char_boundary(self, byte_idx: usize) -> bool {
if byte_idx == 0 {
return true;
}
if byte_idx >= self.len_bytes() {
byte_idx == self.len_bytes()
} else {
is_utf8_char_boundary(self.bytes_at(byte_idx).next().unwrap())
}
}
fn floor_grapheme_boundary(self, mut byte_idx: usize) -> usize {
if byte_idx >= self.len_bytes() {
return self.len_bytes();
}
byte_idx = self.ceil_char_boundary(byte_idx + 1);
let (mut chunk, mut chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
let mut cursor = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
loop {
match cursor.prev_boundary(chunk, chunk_byte_idx) {
Ok(None) => return 0,
Ok(Some(boundary)) => return boundary,
Err(GraphemeIncomplete::PrevChunk) => {
let (ch, ch_byte_idx, _, _) = self.chunk_at_byte(chunk_byte_idx - 1);
chunk = ch;
chunk_byte_idx = ch_byte_idx;
}
Err(GraphemeIncomplete::PreContext(n)) => {
let ctx_chunk = self.chunk_at_byte(n - 1).0;
cursor.provide_context(ctx_chunk, n - ctx_chunk.len());
}
_ => unreachable!(),
}
}
}
fn ceil_grapheme_boundary(self, mut byte_idx: usize) -> usize {
if byte_idx >= self.len_bytes() {
return self.len_bytes();
}
if byte_idx == 0 {
return 0;
}
byte_idx = self.floor_char_boundary(byte_idx - 1);
let (mut chunk, mut chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
let mut cursor = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
loop {
match cursor.next_boundary(chunk, chunk_byte_idx) {
Ok(None) => return self.len_bytes(),
Ok(Some(boundary)) => return boundary,
Err(GraphemeIncomplete::NextChunk) => {
chunk_byte_idx += chunk.len();
chunk = self.chunk_at_byte(chunk_byte_idx).0;
}
Err(GraphemeIncomplete::PreContext(n)) => {
let ctx_chunk = self.chunk_at_byte(n - 1).0;
cursor.provide_context(ctx_chunk, n - ctx_chunk.len());
}
_ => unreachable!(),
}
}
}
fn is_grapheme_boundary(self, byte_idx: usize) -> bool {
// The byte must lie on a character boundary to lie on a grapheme cluster boundary.
if !self.is_char_boundary(byte_idx) {
return false;
}
let (chunk, chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
let mut cursor = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
loop {
match cursor.is_boundary(chunk, chunk_byte_idx) {
Ok(n) => return n,
Err(GraphemeIncomplete::PreContext(n)) => {
let (ctx_chunk, ctx_byte_start, _, _) = self.chunk_at_byte(n - 1);
cursor.provide_context(ctx_chunk, ctx_byte_start);
}
Err(_) => unreachable!(),
}
}
}
fn graphemes_rev(self) -> RopeGraphemes<'a> {
self.graphemes_at(self.len_bytes()).reversed()
}
fn graphemes_at(self, byte_idx: usize) -> RopeGraphemes<'a> {
// Bounds check
assert!(byte_idx <= self.len_bytes());
let (mut chunks, chunk_byte_idx, _, _) = self.chunks_at_byte(byte_idx);
let current_chunk = chunks.next().unwrap_or("");
RopeGraphemes {
text: self,
chunks,
current_chunk,
chunk_byte_idx,
cursor: GraphemeCursor::new(byte_idx, self.len_bytes(), true),
is_reversed: false,
}
}
fn grapheme_indices_at(self, byte_idx: usize) -> RopeGraphemeIndices<'a> {
// Bounds check
assert!(byte_idx <= self.len_bytes());
RopeGraphemeIndices {
front_offset: byte_idx,
iter: self.graphemes_at(byte_idx),
is_reversed: false,
}
}
fn nth_next_grapheme_boundary(self, mut byte_idx: usize, n: usize) -> usize {
// Bounds check
assert!(byte_idx <= self.len_bytes());
byte_idx = self.floor_char_boundary(byte_idx);
// Get the chunk with our byte index in it.
let (mut chunk, mut chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
// Set up the grapheme cursor.
let mut gc = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
// Find the nth next grapheme cluster boundary.
for _ in 0..n {
loop {
match gc.next_boundary(chunk, chunk_byte_idx) {
Ok(None) => return self.len_bytes(),
Ok(Some(boundary)) => {
byte_idx = boundary;
break;
}
Err(GraphemeIncomplete::NextChunk) => {
chunk_byte_idx += chunk.len();
let (a, _, _, _) = self.chunk_at_byte(chunk_byte_idx);
chunk = a;
}
Err(GraphemeIncomplete::PreContext(n)) => {
let ctx_chunk = self.chunk_at_byte(n - 1).0;
gc.provide_context(ctx_chunk, n - ctx_chunk.len());
}
_ => unreachable!(),
}
}
}
byte_idx
}
fn nth_prev_grapheme_boundary(self, mut byte_idx: usize, n: usize) -> usize {
// Bounds check
assert!(byte_idx <= self.len_bytes());
byte_idx = self.ceil_char_boundary(byte_idx);
// Get the chunk with our byte index in it.
let (mut chunk, mut chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
// Set up the grapheme cursor.
let mut gc = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
for _ in 0..n {
loop {
match gc.prev_boundary(chunk, chunk_byte_idx) {
Ok(None) => return 0,
Ok(Some(boundary)) => {
byte_idx = boundary;
break;
}
Err(GraphemeIncomplete::PrevChunk) => {
let (a, b, _, _) = self.chunk_at_byte(chunk_byte_idx - 1);
chunk = a;
chunk_byte_idx = b;
}
Err(GraphemeIncomplete::PreContext(n)) => {
let ctx_chunk = self.chunk_at_byte(n - 1).0;
gc.provide_context(ctx_chunk, n - ctx_chunk.len());
}
_ => unreachable!(),
}
}
}
byte_idx
}
}
// copied from std
#[inline]
const fn is_utf8_char_boundary(b: u8) -> bool {
// This is bit magic equivalent to: b < 128 || b >= 192
(b as i8) >= -0x40
}
/// An iterator over the graphemes of a `RopeSlice`.
///
/// This iterator is cursor-like: rather than implementing DoubleEndedIterator it can be reversed
/// like a cursor. This style matches `Bytes` and `Chars` iterator types in Ropey and is more
/// natural and useful for wrapping `GraphemeCursor`.
#[derive(Clone)]
pub struct RopeGraphemes<'a> {
text: RopeSlice<'a>,
chunks: Chunks<'a>,
current_chunk: &'a str,
/// Byte index of the start of the current chunk.
chunk_byte_idx: usize,
cursor: GraphemeCursor,
is_reversed: bool,
}
impl fmt::Debug for RopeGraphemes<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RopeGraphemes")
.field("text", &self.text)
.field("chunks", &self.chunks)
.field("current_chunk", &self.current_chunk)
.field("chunk_byte_idx", &self.chunk_byte_idx)
// .field("cursor", &self.cursor)
.field("is_reversed", &self.is_reversed)
.finish()
}
}
impl<'a> RopeGraphemes<'a> {
#[allow(clippy::should_implement_trait)]
pub fn next(&mut self) -> Option<RopeSlice<'a>> {
if self.is_reversed {
self.prev_impl()
} else {
self.next_impl()
}
}
pub fn prev(&mut self) -> Option<RopeSlice<'a>> {
if self.is_reversed {
self.next_impl()
} else {
self.prev_impl()
}
}
pub fn reverse(&mut self) {
self.is_reversed = !self.is_reversed;
}
#[must_use]
pub fn reversed(mut self) -> Self {
self.reverse();
self
}
fn next_impl(&mut self) -> Option<RopeSlice<'a>> {
let a = self.cursor.cur_cursor();
let b;
loop {
match self
.cursor
.next_boundary(self.current_chunk, self.chunk_byte_idx)
{
Ok(None) => return None,
Ok(Some(boundary)) => {
b = boundary;
break;
}
Err(GraphemeIncomplete::NextChunk) => {
self.chunk_byte_idx += self.current_chunk.len();
self.current_chunk = self.chunks.next().unwrap_or("");
}
Err(GraphemeIncomplete::PreContext(idx)) => {
let (chunk, byte_idx, _, _) = self.text.chunk_at_byte(idx.saturating_sub(1));
self.cursor.provide_context(chunk, byte_idx);
}
_ => unreachable!(),
}
}
if a < self.chunk_byte_idx {
Some(self.text.byte_slice(a..b))
} else {
let a2 = a - self.chunk_byte_idx;
let b2 = b - self.chunk_byte_idx;
Some((&self.current_chunk[a2..b2]).into())
}
}
fn prev_impl(&mut self) -> Option<RopeSlice<'a>> {
let a = self.cursor.cur_cursor();
let b;
loop {
match self
.cursor
.prev_boundary(self.current_chunk, self.chunk_byte_idx)
{
Ok(None) => return None,
Ok(Some(boundary)) => {
b = boundary;
break;
}
Err(GraphemeIncomplete::PrevChunk) => {
self.current_chunk = self.chunks.prev().unwrap_or("");
self.chunk_byte_idx -= self.current_chunk.len();
}
Err(GraphemeIncomplete::PreContext(idx)) => {
let (chunk, byte_idx, _, _) = self.text.chunk_at_byte(idx.saturating_sub(1));
self.cursor.provide_context(chunk, byte_idx);
}
_ => unreachable!(),
}
}
if a >= self.chunk_byte_idx + self.current_chunk.len() {
Some(self.text.byte_slice(b..a))
} else {
let a2 = a - self.chunk_byte_idx;
let b2 = b - self.chunk_byte_idx;
Some((&self.current_chunk[b2..a2]).into())
}
}
}
impl<'a> Iterator for RopeGraphemes<'a> {
type Item = RopeSlice<'a>;
fn next(&mut self) -> Option<Self::Item> {
RopeGraphemes::next(self)
}
}
/// An iterator over the grapheme clusters in a rope and the byte indices where each grapheme
/// cluster starts.
///
/// This iterator wraps `RopeGraphemes` and is also cursor-like. Use `reverse` or `reversed` to
/// toggle the direction of the iterator. See [RopeGraphemes].
#[derive(Debug, Clone)]
pub struct RopeGraphemeIndices<'a> {
front_offset: usize,
iter: RopeGraphemes<'a>,
is_reversed: bool,
}
impl<'a> RopeGraphemeIndices<'a> {
#[allow(clippy::should_implement_trait)]
pub fn next(&mut self) -> Option<(usize, RopeSlice<'a>)> {
if self.is_reversed {
self.prev_impl()
} else {
self.next_impl()
}
}
pub fn prev(&mut self) -> Option<(usize, RopeSlice<'a>)> {
if self.is_reversed {
self.next_impl()
} else {
self.prev_impl()
}
}
pub fn reverse(&mut self) {
self.is_reversed = !self.is_reversed;
}
#[must_use]
pub fn reversed(mut self) -> Self {
self.reverse();
self
}
fn next_impl(&mut self) -> Option<(usize, RopeSlice<'a>)> {
let slice = self.iter.next()?;
let idx = self.front_offset;
self.front_offset += slice.len_bytes();
Some((idx, slice))
}
fn prev_impl(&mut self) -> Option<(usize, RopeSlice<'a>)> {
let slice = self.iter.prev()?;
self.front_offset -= slice.len_bytes();
Some((self.front_offset, slice))
}
}
impl<'a> Iterator for RopeGraphemeIndices<'a> {
type Item = (usize, RopeSlice<'a>);
fn next(&mut self) -> Option<Self::Item> {
RopeGraphemeIndices::next(self)
}
}
#[cfg(test)]
mod tests {
use ropey::RopeSlice;
use crate::rope::RopeSliceExt;
#[test]
fn starts_with() {
assert!(RopeSlice::from("asdf").starts_with("a"));
}
#[test]
fn ends_with() {
assert!(RopeSlice::from("asdf").ends_with("f"));
}
#[test]
fn char_boundaries() {
let ascii = RopeSlice::from("ascii");
// When the given index lies on a character boundary, the index should not change.
for byte_idx in 0..=ascii.len_bytes() {
assert_eq!(ascii.floor_char_boundary(byte_idx), byte_idx);
assert_eq!(ascii.ceil_char_boundary(byte_idx), byte_idx);
assert!(ascii.is_char_boundary(byte_idx));
}
// This is a polyfill of a method of this trait which was replaced by ceil_char_boundary.
// It returns the _character index_ of the given byte index, rounding up if it does not
// already lie on a character boundary.
fn byte_to_next_char(slice: RopeSlice, byte_idx: usize) -> usize {
slice.byte_to_char(slice.ceil_char_boundary(byte_idx))
}
for i in 0..=6 {
assert_eq!(byte_to_next_char(RopeSlice::from("foobar"), i), i);
}
for char_idx in 0..10 {
let len = "😆".len();
assert_eq!(
byte_to_next_char(RopeSlice::from("😆😆😆😆😆😆😆😆😆😆"), char_idx * len),
char_idx
);
for i in 1..=len {
assert_eq!(
byte_to_next_char(RopeSlice::from("😆😆😆😆😆😆😆😆😆😆"), char_idx * len + i),
char_idx + 1
);
}
}
}
#[test]
fn grapheme_boundaries() {
let ascii = RopeSlice::from("ascii");
// When the given index lies on a grapheme boundary, the index should not change.
for byte_idx in 0..=ascii.len_bytes() {
assert_eq!(ascii.floor_char_boundary(byte_idx), byte_idx);
assert_eq!(ascii.ceil_char_boundary(byte_idx), byte_idx);
assert!(ascii.is_grapheme_boundary(byte_idx));
}
// 🏴‍☠️: U+1F3F4 U+200D U+2620 U+FE0F
// 13 bytes, hex: f0 9f 8f b4 + e2 80 8d + e2 98 a0 + ef b8 8f
let g = RopeSlice::from("🏴‍☠️\r\n");
let emoji_len = "🏴‍☠️".len();
let end = g.len_bytes();
for byte_idx in 0..emoji_len {
assert_eq!(g.floor_grapheme_boundary(byte_idx), 0);
}
for byte_idx in emoji_len..end {
assert_eq!(g.floor_grapheme_boundary(byte_idx), emoji_len);
}
assert_eq!(g.floor_grapheme_boundary(end), end);
assert_eq!(g.ceil_grapheme_boundary(0), 0);
for byte_idx in 1..=emoji_len {
assert_eq!(g.ceil_grapheme_boundary(byte_idx), emoji_len);
}
for byte_idx in emoji_len + 1..=end {
assert_eq!(g.ceil_grapheme_boundary(byte_idx), end);
}
assert!(g.is_grapheme_boundary(0));
assert!(g.is_grapheme_boundary(emoji_len));
assert!(g.is_grapheme_boundary(end));
for byte_idx in (1..emoji_len).chain(emoji_len + 1..end) {
assert!(!g.is_grapheme_boundary(byte_idx));
}
}
}