2025-01-27 09:58:27 +08:00
|
|
|
use std::fmt;
|
2024-02-26 15:45:20 +08:00
|
|
|
use std::ops::{Bound, RangeBounds};
|
|
|
|
|
|
|
|
pub use regex_cursor::engines::meta::{Builder as RegexBuilder, Regex};
|
|
|
|
pub use regex_cursor::regex_automata::util::syntax::Config;
|
|
|
|
use regex_cursor::{Input as RegexInput, RopeyCursor};
|
2025-01-27 09:58:27 +08:00
|
|
|
use ropey::iter::Chunks;
|
2023-12-01 07:03:27 +08:00
|
|
|
use ropey::RopeSlice;
|
2025-01-27 05:52:29 +08:00
|
|
|
use unicode_segmentation::{GraphemeCursor, GraphemeIncomplete};
|
2023-12-01 07:03:27 +08:00
|
|
|
|
2024-02-26 15:45:20 +08:00
|
|
|
pub trait RopeSliceExt<'a>: Sized {
|
2023-12-01 07:03:27 +08:00
|
|
|
fn ends_with(self, text: &str) -> bool;
|
|
|
|
fn starts_with(self, text: &str) -> bool;
|
2024-02-26 15:45:20 +08:00
|
|
|
fn regex_input(self) -> RegexInput<RopeyCursor<'a>>;
|
|
|
|
fn regex_input_at_bytes<R: RangeBounds<usize>>(
|
|
|
|
self,
|
|
|
|
byte_range: R,
|
|
|
|
) -> RegexInput<RopeyCursor<'a>>;
|
|
|
|
fn regex_input_at<R: RangeBounds<usize>>(self, char_range: R) -> RegexInput<RopeyCursor<'a>>;
|
2024-02-27 21:36:25 +08:00
|
|
|
fn first_non_whitespace_char(self) -> Option<usize>;
|
|
|
|
fn last_non_whitespace_char(self) -> Option<usize>;
|
2025-01-26 02:36:20 +08:00
|
|
|
/// Finds the closest byte index not exceeding `byte_idx` which lies on a character boundary.
|
|
|
|
///
|
|
|
|
/// If `byte_idx` already lies on a character boundary then it is returned as-is. When
|
|
|
|
/// `byte_idx` lies between two character boundaries, this function returns the byte index of
|
|
|
|
/// the lesser / earlier / left-hand-side boundary.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # use ropey::RopeSlice;
|
|
|
|
/// # use helix_stdx::rope::RopeSliceExt;
|
|
|
|
/// let text = RopeSlice::from("⌚"); // three bytes: e2 8c 9a
|
|
|
|
/// assert_eq!(text.floor_char_boundary(0), 0);
|
|
|
|
/// assert_eq!(text.floor_char_boundary(1), 0);
|
|
|
|
/// assert_eq!(text.floor_char_boundary(2), 0);
|
|
|
|
/// assert_eq!(text.floor_char_boundary(3), 3);
|
|
|
|
/// ```
|
|
|
|
fn floor_char_boundary(self, byte_idx: usize) -> usize;
|
|
|
|
/// Finds the closest byte index not below `byte_idx` which lies on a character boundary.
|
|
|
|
///
|
|
|
|
/// If `byte_idx` already lies on a character boundary then it is returned as-is. When
|
|
|
|
/// `byte_idx` lies between two character boundaries, this function returns the byte index of
|
|
|
|
/// the greater / later / right-hand-side boundary.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # use ropey::RopeSlice;
|
|
|
|
/// # use helix_stdx::rope::RopeSliceExt;
|
|
|
|
/// let text = RopeSlice::from("⌚"); // three bytes: e2 8c 9a
|
|
|
|
/// assert_eq!(text.ceil_char_boundary(0), 0);
|
|
|
|
/// assert_eq!(text.ceil_char_boundary(1), 3);
|
|
|
|
/// assert_eq!(text.ceil_char_boundary(2), 3);
|
|
|
|
/// assert_eq!(text.ceil_char_boundary(3), 3);
|
|
|
|
/// ```
|
|
|
|
fn ceil_char_boundary(self, byte_idx: usize) -> usize;
|
2025-01-27 05:52:29 +08:00
|
|
|
/// Checks whether the given `byte_idx` lies on a character boundary.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # use ropey::RopeSlice;
|
|
|
|
/// # use helix_stdx::rope::RopeSliceExt;
|
|
|
|
/// let text = RopeSlice::from("⌚"); // three bytes: e2 8c 9a
|
|
|
|
/// assert!(text.is_char_boundary(0));
|
|
|
|
/// assert!(!text.is_char_boundary(1));
|
|
|
|
/// assert!(!text.is_char_boundary(2));
|
|
|
|
/// assert!(text.is_char_boundary(3));
|
|
|
|
/// ```
|
|
|
|
#[allow(clippy::wrong_self_convention)]
|
|
|
|
fn is_char_boundary(self, byte_idx: usize) -> bool;
|
|
|
|
/// Finds the closest byte index not exceeding `byte_idx` which lies on a grapheme cluster
|
|
|
|
/// boundary.
|
|
|
|
///
|
|
|
|
/// If `byte_idx` already lies on a grapheme cluster boundary then it is returned as-is. When
|
|
|
|
/// `byte_idx` lies between two grapheme cluster boundaries, this function returns the byte
|
|
|
|
/// index of the lesser / earlier / left-hand-side boundary.
|
|
|
|
///
|
|
|
|
/// `byte_idx` does not need to be aligned to a character boundary.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # use ropey::RopeSlice;
|
|
|
|
/// # use helix_stdx::rope::RopeSliceExt;
|
|
|
|
/// let text = RopeSlice::from("\r\n"); // U+000D U+000A, hex: 0d 0a
|
|
|
|
/// assert_eq!(text.floor_grapheme_boundary(0), 0);
|
|
|
|
/// assert_eq!(text.floor_grapheme_boundary(1), 0);
|
|
|
|
/// assert_eq!(text.floor_grapheme_boundary(2), 2);
|
|
|
|
/// ```
|
|
|
|
fn floor_grapheme_boundary(self, byte_idx: usize) -> usize;
|
|
|
|
/// Finds the closest byte index not exceeding `byte_idx` which lies on a grapheme cluster
|
|
|
|
/// boundary.
|
|
|
|
///
|
|
|
|
/// If `byte_idx` already lies on a grapheme cluster boundary then it is returned as-is. When
|
|
|
|
/// `byte_idx` lies between two grapheme cluster boundaries, this function returns the byte
|
|
|
|
/// index of the greater / later / right-hand-side boundary.
|
|
|
|
///
|
|
|
|
/// `byte_idx` does not need to be aligned to a character boundary.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # use ropey::RopeSlice;
|
|
|
|
/// # use helix_stdx::rope::RopeSliceExt;
|
|
|
|
/// let text = RopeSlice::from("\r\n"); // U+000D U+000A, hex: 0d 0a
|
|
|
|
/// assert_eq!(text.ceil_grapheme_boundary(0), 0);
|
|
|
|
/// assert_eq!(text.ceil_grapheme_boundary(1), 2);
|
|
|
|
/// assert_eq!(text.ceil_grapheme_boundary(2), 2);
|
|
|
|
/// ```
|
|
|
|
fn ceil_grapheme_boundary(self, byte_idx: usize) -> usize;
|
|
|
|
/// Checks whether the `byte_idx` lies on a grapheme cluster boundary.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # use ropey::RopeSlice;
|
|
|
|
/// # use helix_stdx::rope::RopeSliceExt;
|
|
|
|
/// let text = RopeSlice::from("\r\n"); // U+000D U+000A, hex: 0d 0a
|
|
|
|
/// assert!(text.is_grapheme_boundary(0));
|
|
|
|
/// assert!(!text.is_grapheme_boundary(1));
|
|
|
|
/// assert!(text.is_grapheme_boundary(2));
|
|
|
|
/// ```
|
|
|
|
#[allow(clippy::wrong_self_convention)]
|
|
|
|
fn is_grapheme_boundary(self, byte_idx: usize) -> bool;
|
2025-01-27 09:58:27 +08:00
|
|
|
/// Returns an iterator over the grapheme clusters in the slice.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # use ropey::RopeSlice;
|
|
|
|
/// # use helix_stdx::rope::RopeSliceExt;
|
|
|
|
/// let text = RopeSlice::from("😶🌫️🏴☠️🖼️");
|
|
|
|
/// let graphemes: Vec<_> = text.graphemes().collect();
|
|
|
|
/// assert_eq!(graphemes.as_slice(), &["😶🌫️", "🏴☠️", "🖼️"]);
|
|
|
|
/// ```
|
2025-06-11 08:55:47 +08:00
|
|
|
fn graphemes(self) -> RopeGraphemes<'a> {
|
|
|
|
self.graphemes_at(0)
|
|
|
|
}
|
2025-01-27 09:58:27 +08:00
|
|
|
/// Returns an iterator over the grapheme clusters in the slice, reversed.
|
|
|
|
///
|
|
|
|
/// The returned iterator starts at the end of the slice and ends at the beginning of the
|
|
|
|
/// slice.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # use ropey::RopeSlice;
|
|
|
|
/// # use helix_stdx::rope::RopeSliceExt;
|
|
|
|
/// let text = RopeSlice::from("😶🌫️🏴☠️🖼️");
|
|
|
|
/// let graphemes: Vec<_> = text.graphemes_rev().collect();
|
|
|
|
/// assert_eq!(graphemes.as_slice(), &["🖼️", "🏴☠️", "😶🌫️"]);
|
|
|
|
/// ```
|
2025-06-11 08:55:47 +08:00
|
|
|
fn graphemes_rev(self) -> RopeGraphemes<'a>;
|
|
|
|
/// Returns an iterator over the grapheme clusters in the slice at the given byte index.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # use ropey::Rope;
|
|
|
|
/// # use helix_stdx::rope::RopeSliceExt;
|
|
|
|
/// let text = Rope::from_str("😶🌫️🏴☠️🖼️");
|
|
|
|
/// // 14 is the byte index of the pirate flag's starting cluster boundary.
|
|
|
|
/// let graphemes: Vec<_> = text.slice(..).graphemes_at(14).collect();
|
|
|
|
/// assert_eq!(graphemes.as_slice(), &["🏴☠️", "🖼️"]);
|
|
|
|
/// // 27 is the byte index of the pirate flag's ending cluster boundary.
|
|
|
|
/// let graphemes: Vec<_> = text.slice(..).graphemes_at(27).reversed().collect();
|
|
|
|
/// assert_eq!(graphemes.as_slice(), &["🏴☠️", "😶🌫️"]);
|
|
|
|
/// ```
|
|
|
|
fn graphemes_at(self, byte_idx: usize) -> RopeGraphemes<'a>;
|
2025-06-11 04:00:42 +08:00
|
|
|
/// Finds the byte index of the next grapheme boundary after `byte_idx`.
|
|
|
|
///
|
|
|
|
/// If the byte index lies on the last grapheme cluster in the slice then this function
|
|
|
|
/// returns `RopeSlice::len_bytes`.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # use ropey::Rope;
|
|
|
|
/// # use helix_stdx::rope::RopeSliceExt;
|
|
|
|
/// let text = Rope::from_str("😶🌫️🏴☠️🖼️");
|
|
|
|
/// let slice = text.slice(..);
|
|
|
|
/// let mut byte_idx = 0;
|
|
|
|
/// assert_eq!(slice.graphemes_at(byte_idx).next(), Some("😶🌫️".into()));
|
|
|
|
/// byte_idx = slice.next_grapheme_boundary(byte_idx);
|
|
|
|
/// assert_eq!(slice.graphemes_at(byte_idx).next(), Some("🏴☠️".into()));
|
|
|
|
///
|
|
|
|
/// // If `byte_idx` does not lie on a character or grapheme boundary then this function is
|
|
|
|
/// // functionally the same as `ceil_grapheme_boundary`.
|
|
|
|
/// assert_eq!(slice.next_grapheme_boundary(byte_idx - 1), byte_idx);
|
|
|
|
/// assert_eq!(slice.next_grapheme_boundary(byte_idx - 2), byte_idx);
|
|
|
|
/// assert_eq!(slice.next_grapheme_boundary(byte_idx + 1), slice.next_grapheme_boundary(byte_idx));
|
|
|
|
/// assert_eq!(slice.next_grapheme_boundary(byte_idx + 2), slice.next_grapheme_boundary(byte_idx));
|
|
|
|
///
|
|
|
|
/// byte_idx = slice.next_grapheme_boundary(byte_idx);
|
|
|
|
/// assert_eq!(slice.graphemes_at(byte_idx).next(), Some("🖼️".into()));
|
|
|
|
/// byte_idx = slice.next_grapheme_boundary(byte_idx);
|
|
|
|
/// assert_eq!(slice.graphemes_at(byte_idx).next(), None);
|
|
|
|
/// assert_eq!(byte_idx, slice.len_bytes());
|
|
|
|
/// ```
|
|
|
|
fn next_grapheme_boundary(self, byte_idx: usize) -> usize {
|
|
|
|
self.nth_next_grapheme_boundary(byte_idx, 1)
|
|
|
|
}
|
|
|
|
/// Finds the byte index of the `n`th grapheme cluster after the given `byte_idx`.
|
|
|
|
///
|
|
|
|
/// If there are fewer than `n` grapheme clusters after `byte_idx` in the rope then this
|
|
|
|
/// function returns `RopeSlice::len_bytes`.
|
|
|
|
///
|
|
|
|
/// This is functionally equivalent to calling `next_grapheme_boundary` `n` times but is more
|
|
|
|
/// efficient.
|
|
|
|
fn nth_next_grapheme_boundary(self, byte_idx: usize, n: usize) -> usize;
|
|
|
|
/// Finds the byte index of the previous grapheme boundary before `byte_idx`.
|
|
|
|
///
|
|
|
|
/// If the byte index lies on the first grapheme cluster in the slice then this function
|
|
|
|
/// returns zero.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # use ropey::Rope;
|
|
|
|
/// # use helix_stdx::rope::RopeSliceExt;
|
|
|
|
/// let text = Rope::from_str("😶🌫️🏴☠️🖼️");
|
|
|
|
/// let slice = text.slice(..);
|
|
|
|
/// let mut byte_idx = text.len_bytes();
|
|
|
|
/// assert_eq!(slice.graphemes_at(byte_idx).prev(), Some("🖼️".into()));
|
|
|
|
/// byte_idx = slice.prev_grapheme_boundary(byte_idx);
|
|
|
|
/// assert_eq!(slice.graphemes_at(byte_idx).prev(), Some("🏴☠️".into()));
|
|
|
|
///
|
|
|
|
/// // If `byte_idx` does not lie on a character or grapheme boundary then this function is
|
|
|
|
/// // functionally the same as `floor_grapheme_boundary`.
|
|
|
|
/// assert_eq!(slice.prev_grapheme_boundary(byte_idx + 1), byte_idx);
|
|
|
|
/// assert_eq!(slice.prev_grapheme_boundary(byte_idx + 2), byte_idx);
|
|
|
|
/// assert_eq!(slice.prev_grapheme_boundary(byte_idx - 1), slice.prev_grapheme_boundary(byte_idx));
|
|
|
|
/// assert_eq!(slice.prev_grapheme_boundary(byte_idx - 2), slice.prev_grapheme_boundary(byte_idx));
|
|
|
|
///
|
|
|
|
/// byte_idx = slice.prev_grapheme_boundary(byte_idx);
|
|
|
|
/// assert_eq!(slice.graphemes_at(byte_idx).prev(), Some("😶🌫️".into()));
|
|
|
|
/// byte_idx = slice.prev_grapheme_boundary(byte_idx);
|
|
|
|
/// assert_eq!(slice.graphemes_at(byte_idx).prev(), None);
|
|
|
|
/// assert_eq!(byte_idx, 0);
|
|
|
|
/// ```
|
|
|
|
fn prev_grapheme_boundary(self, byte_idx: usize) -> usize {
|
|
|
|
self.nth_prev_grapheme_boundary(byte_idx, 1)
|
|
|
|
}
|
|
|
|
/// Finds the byte index of the `n`th grapheme cluster before the given `byte_idx`.
|
|
|
|
///
|
|
|
|
/// If there are fewer than `n` grapheme clusters before `byte_idx` in the rope then this
|
|
|
|
/// function returns zero.
|
|
|
|
///
|
|
|
|
/// This is functionally equivalent to calling `prev_grapheme_boundary` `n` times but is more
|
|
|
|
/// efficient.
|
|
|
|
fn nth_prev_grapheme_boundary(self, byte_idx: usize, n: usize) -> usize;
|
2023-12-01 07:03:27 +08:00
|
|
|
}
|
|
|
|
|
2024-02-26 15:45:20 +08:00
|
|
|
impl<'a> RopeSliceExt<'a> for RopeSlice<'a> {
|
2023-12-01 07:03:27 +08:00
|
|
|
fn ends_with(self, text: &str) -> bool {
|
|
|
|
let len = self.len_bytes();
|
|
|
|
if len < text.len() {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
self.get_byte_slice(len - text.len()..)
|
2025-01-10 01:02:21 +08:00
|
|
|
.is_some_and(|end| end == text)
|
2023-12-01 07:03:27 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
fn starts_with(self, text: &str) -> bool {
|
|
|
|
let len = self.len_bytes();
|
|
|
|
if len < text.len() {
|
|
|
|
return false;
|
|
|
|
}
|
2024-09-21 22:05:17 +08:00
|
|
|
self.get_byte_slice(..text.len())
|
2025-01-10 01:02:21 +08:00
|
|
|
.is_some_and(|start| start == text)
|
2023-12-01 07:03:27 +08:00
|
|
|
}
|
2024-02-26 15:45:20 +08:00
|
|
|
|
|
|
|
fn regex_input(self) -> RegexInput<RopeyCursor<'a>> {
|
|
|
|
RegexInput::new(self)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn regex_input_at<R: RangeBounds<usize>>(self, char_range: R) -> RegexInput<RopeyCursor<'a>> {
|
|
|
|
let start_bound = match char_range.start_bound() {
|
|
|
|
Bound::Included(&val) => Bound::Included(self.char_to_byte(val)),
|
|
|
|
Bound::Excluded(&val) => Bound::Excluded(self.char_to_byte(val)),
|
|
|
|
Bound::Unbounded => Bound::Unbounded,
|
|
|
|
};
|
|
|
|
let end_bound = match char_range.end_bound() {
|
|
|
|
Bound::Included(&val) => Bound::Included(self.char_to_byte(val)),
|
|
|
|
Bound::Excluded(&val) => Bound::Excluded(self.char_to_byte(val)),
|
|
|
|
Bound::Unbounded => Bound::Unbounded,
|
|
|
|
};
|
|
|
|
self.regex_input_at_bytes((start_bound, end_bound))
|
|
|
|
}
|
|
|
|
fn regex_input_at_bytes<R: RangeBounds<usize>>(
|
|
|
|
self,
|
|
|
|
byte_range: R,
|
|
|
|
) -> RegexInput<RopeyCursor<'a>> {
|
|
|
|
let input = match byte_range.start_bound() {
|
|
|
|
Bound::Included(&pos) | Bound::Excluded(&pos) => {
|
|
|
|
RegexInput::new(RopeyCursor::at(self, pos))
|
|
|
|
}
|
|
|
|
Bound::Unbounded => RegexInput::new(self),
|
|
|
|
};
|
|
|
|
input.range(byte_range)
|
|
|
|
}
|
2024-02-27 21:36:25 +08:00
|
|
|
fn first_non_whitespace_char(self) -> Option<usize> {
|
|
|
|
self.chars().position(|ch| !ch.is_whitespace())
|
|
|
|
}
|
|
|
|
fn last_non_whitespace_char(self) -> Option<usize> {
|
|
|
|
self.chars_at(self.len_chars())
|
|
|
|
.reversed()
|
|
|
|
.position(|ch| !ch.is_whitespace())
|
|
|
|
.map(|pos| self.len_chars() - pos - 1)
|
|
|
|
}
|
2024-04-10 23:14:08 +08:00
|
|
|
|
2025-01-27 05:52:29 +08:00
|
|
|
// These three are adapted from std:
|
2025-01-26 02:36:20 +08:00
|
|
|
|
|
|
|
fn floor_char_boundary(self, byte_idx: usize) -> usize {
|
|
|
|
if byte_idx >= self.len_bytes() {
|
|
|
|
self.len_bytes()
|
|
|
|
} else {
|
|
|
|
let offset = self
|
|
|
|
.bytes_at(byte_idx + 1)
|
|
|
|
.reversed()
|
|
|
|
.take(4)
|
|
|
|
.position(is_utf8_char_boundary)
|
|
|
|
// A char can only be four bytes long so we are guaranteed to find a boundary.
|
|
|
|
.unwrap();
|
|
|
|
|
|
|
|
byte_idx - offset
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn ceil_char_boundary(self, byte_idx: usize) -> usize {
|
|
|
|
if byte_idx > self.len_bytes() {
|
|
|
|
self.len_bytes()
|
|
|
|
} else {
|
|
|
|
let upper_bound = self.len_bytes().min(byte_idx + 4);
|
|
|
|
self.bytes_at(byte_idx)
|
|
|
|
.position(is_utf8_char_boundary)
|
|
|
|
.map_or(upper_bound, |pos| pos + byte_idx)
|
|
|
|
}
|
|
|
|
}
|
2025-01-27 05:52:29 +08:00
|
|
|
|
|
|
|
fn is_char_boundary(self, byte_idx: usize) -> bool {
|
|
|
|
if byte_idx == 0 {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if byte_idx >= self.len_bytes() {
|
|
|
|
byte_idx == self.len_bytes()
|
|
|
|
} else {
|
|
|
|
is_utf8_char_boundary(self.bytes_at(byte_idx).next().unwrap())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn floor_grapheme_boundary(self, mut byte_idx: usize) -> usize {
|
|
|
|
if byte_idx >= self.len_bytes() {
|
|
|
|
return self.len_bytes();
|
|
|
|
}
|
|
|
|
|
|
|
|
byte_idx = self.ceil_char_boundary(byte_idx + 1);
|
|
|
|
|
|
|
|
let (mut chunk, mut chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
|
|
|
|
|
|
|
|
let mut cursor = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
|
|
|
|
|
|
|
|
loop {
|
|
|
|
match cursor.prev_boundary(chunk, chunk_byte_idx) {
|
|
|
|
Ok(None) => return 0,
|
|
|
|
Ok(Some(boundary)) => return boundary,
|
|
|
|
Err(GraphemeIncomplete::PrevChunk) => {
|
|
|
|
let (ch, ch_byte_idx, _, _) = self.chunk_at_byte(chunk_byte_idx - 1);
|
|
|
|
chunk = ch;
|
|
|
|
chunk_byte_idx = ch_byte_idx;
|
|
|
|
}
|
|
|
|
Err(GraphemeIncomplete::PreContext(n)) => {
|
|
|
|
let ctx_chunk = self.chunk_at_byte(n - 1).0;
|
|
|
|
cursor.provide_context(ctx_chunk, n - ctx_chunk.len());
|
|
|
|
}
|
|
|
|
_ => unreachable!(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn ceil_grapheme_boundary(self, mut byte_idx: usize) -> usize {
|
|
|
|
if byte_idx >= self.len_bytes() {
|
|
|
|
return self.len_bytes();
|
|
|
|
}
|
|
|
|
|
|
|
|
if byte_idx == 0 {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
byte_idx = self.floor_char_boundary(byte_idx - 1);
|
|
|
|
|
|
|
|
let (mut chunk, mut chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
|
|
|
|
|
|
|
|
let mut cursor = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
|
|
|
|
|
|
|
|
loop {
|
|
|
|
match cursor.next_boundary(chunk, chunk_byte_idx) {
|
|
|
|
Ok(None) => return self.len_bytes(),
|
|
|
|
Ok(Some(boundary)) => return boundary,
|
|
|
|
Err(GraphemeIncomplete::NextChunk) => {
|
|
|
|
chunk_byte_idx += chunk.len();
|
|
|
|
chunk = self.chunk_at_byte(chunk_byte_idx).0;
|
|
|
|
}
|
|
|
|
Err(GraphemeIncomplete::PreContext(n)) => {
|
|
|
|
let ctx_chunk = self.chunk_at_byte(n - 1).0;
|
|
|
|
cursor.provide_context(ctx_chunk, n - ctx_chunk.len());
|
|
|
|
}
|
|
|
|
_ => unreachable!(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn is_grapheme_boundary(self, byte_idx: usize) -> bool {
|
|
|
|
// The byte must lie on a character boundary to lie on a grapheme cluster boundary.
|
|
|
|
if !self.is_char_boundary(byte_idx) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
let (chunk, chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
|
|
|
|
|
|
|
|
let mut cursor = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
|
|
|
|
|
|
|
|
loop {
|
|
|
|
match cursor.is_boundary(chunk, chunk_byte_idx) {
|
|
|
|
Ok(n) => return n,
|
|
|
|
Err(GraphemeIncomplete::PreContext(n)) => {
|
|
|
|
let (ctx_chunk, ctx_byte_start, _, _) = self.chunk_at_byte(n - 1);
|
|
|
|
cursor.provide_context(ctx_chunk, ctx_byte_start);
|
|
|
|
}
|
|
|
|
Err(_) => unreachable!(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2025-01-27 09:58:27 +08:00
|
|
|
|
2025-06-11 08:55:47 +08:00
|
|
|
fn graphemes_rev(self) -> RopeGraphemes<'a> {
|
|
|
|
self.graphemes_at(self.len_bytes()).reversed()
|
2025-01-27 09:58:27 +08:00
|
|
|
}
|
|
|
|
|
2025-06-11 08:55:47 +08:00
|
|
|
fn graphemes_at(self, byte_idx: usize) -> RopeGraphemes<'a> {
|
|
|
|
// Bounds check
|
|
|
|
assert!(byte_idx <= self.len_bytes());
|
|
|
|
|
|
|
|
let (mut chunks, chunk_byte_idx, _, _) = self.chunks_at_byte(byte_idx);
|
|
|
|
let current_chunk = chunks.next().unwrap_or("");
|
|
|
|
|
|
|
|
RopeGraphemes {
|
2025-01-27 09:58:27 +08:00
|
|
|
text: self,
|
|
|
|
chunks,
|
2025-06-11 08:55:47 +08:00
|
|
|
current_chunk,
|
|
|
|
chunk_byte_idx,
|
|
|
|
cursor: GraphemeCursor::new(byte_idx, self.len_bytes(), true),
|
|
|
|
is_reversed: false,
|
2025-01-27 09:58:27 +08:00
|
|
|
}
|
|
|
|
}
|
2025-06-11 04:00:42 +08:00
|
|
|
|
|
|
|
fn nth_next_grapheme_boundary(self, mut byte_idx: usize, n: usize) -> usize {
|
|
|
|
// Bounds check
|
|
|
|
assert!(byte_idx <= self.len_bytes());
|
|
|
|
|
|
|
|
byte_idx = self.floor_char_boundary(byte_idx);
|
|
|
|
|
|
|
|
// Get the chunk with our byte index in it.
|
|
|
|
let (mut chunk, mut chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
|
|
|
|
|
|
|
|
// Set up the grapheme cursor.
|
|
|
|
let mut gc = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
|
|
|
|
|
|
|
|
// Find the nth next grapheme cluster boundary.
|
|
|
|
for _ in 0..n {
|
|
|
|
loop {
|
|
|
|
match gc.next_boundary(chunk, chunk_byte_idx) {
|
|
|
|
Ok(None) => return self.len_bytes(),
|
|
|
|
Ok(Some(boundary)) => {
|
|
|
|
byte_idx = boundary;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
Err(GraphemeIncomplete::NextChunk) => {
|
|
|
|
chunk_byte_idx += chunk.len();
|
|
|
|
let (a, _, _, _) = self.chunk_at_byte(chunk_byte_idx);
|
|
|
|
chunk = a;
|
|
|
|
}
|
|
|
|
Err(GraphemeIncomplete::PreContext(n)) => {
|
|
|
|
let ctx_chunk = self.chunk_at_byte(n - 1).0;
|
|
|
|
gc.provide_context(ctx_chunk, n - ctx_chunk.len());
|
|
|
|
}
|
|
|
|
_ => unreachable!(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
byte_idx
|
|
|
|
}
|
|
|
|
|
|
|
|
fn nth_prev_grapheme_boundary(self, mut byte_idx: usize, n: usize) -> usize {
|
|
|
|
// Bounds check
|
|
|
|
assert!(byte_idx <= self.len_bytes());
|
|
|
|
|
|
|
|
byte_idx = self.ceil_char_boundary(byte_idx);
|
|
|
|
|
|
|
|
// Get the chunk with our byte index in it.
|
|
|
|
let (mut chunk, mut chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
|
|
|
|
|
|
|
|
// Set up the grapheme cursor.
|
|
|
|
let mut gc = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
|
|
|
|
|
|
|
|
for _ in 0..n {
|
|
|
|
loop {
|
|
|
|
match gc.prev_boundary(chunk, chunk_byte_idx) {
|
|
|
|
Ok(None) => return 0,
|
|
|
|
Ok(Some(boundary)) => {
|
|
|
|
byte_idx = boundary;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
Err(GraphemeIncomplete::PrevChunk) => {
|
|
|
|
let (a, b, _, _) = self.chunk_at_byte(chunk_byte_idx - 1);
|
|
|
|
chunk = a;
|
|
|
|
chunk_byte_idx = b;
|
|
|
|
}
|
|
|
|
Err(GraphemeIncomplete::PreContext(n)) => {
|
|
|
|
let ctx_chunk = self.chunk_at_byte(n - 1).0;
|
|
|
|
gc.provide_context(ctx_chunk, n - ctx_chunk.len());
|
|
|
|
}
|
|
|
|
_ => unreachable!(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
byte_idx
|
|
|
|
}
|
2024-04-10 23:14:08 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// copied from std
|
|
|
|
#[inline]
|
|
|
|
const fn is_utf8_char_boundary(b: u8) -> bool {
|
|
|
|
// This is bit magic equivalent to: b < 128 || b >= 192
|
|
|
|
(b as i8) >= -0x40
|
|
|
|
}
|
|
|
|
|
2025-01-27 09:58:27 +08:00
|
|
|
/// An iterator over the graphemes of a `RopeSlice`.
|
2025-06-11 08:55:47 +08:00
|
|
|
///
|
|
|
|
/// This iterator is cursor-like: rather than implementing DoubleEndedIterator it can be reversed
|
|
|
|
/// like a cursor. This style matches `Bytes` and `Chars` iterator types in Ropey and is more
|
|
|
|
/// natural and useful for wrapping `GraphemeCursor`.
|
2025-01-27 09:58:27 +08:00
|
|
|
#[derive(Clone)]
|
|
|
|
pub struct RopeGraphemes<'a> {
|
|
|
|
text: RopeSlice<'a>,
|
|
|
|
chunks: Chunks<'a>,
|
2025-06-11 08:55:47 +08:00
|
|
|
current_chunk: &'a str,
|
|
|
|
/// Byte index of the start of the current chunk.
|
|
|
|
chunk_byte_idx: usize,
|
2025-01-27 09:58:27 +08:00
|
|
|
cursor: GraphemeCursor,
|
2025-06-11 08:55:47 +08:00
|
|
|
is_reversed: bool,
|
2025-01-27 09:58:27 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
impl fmt::Debug for RopeGraphemes<'_> {
|
|
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
|
|
f.debug_struct("RopeGraphemes")
|
|
|
|
.field("text", &self.text)
|
|
|
|
.field("chunks", &self.chunks)
|
2025-06-11 08:55:47 +08:00
|
|
|
.field("current_chunk", &self.current_chunk)
|
|
|
|
.field("chunk_byte_idx", &self.chunk_byte_idx)
|
2025-01-27 09:58:27 +08:00
|
|
|
// .field("cursor", &self.cursor)
|
2025-06-11 08:55:47 +08:00
|
|
|
.field("is_reversed", &self.is_reversed)
|
2025-01-27 09:58:27 +08:00
|
|
|
.finish()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2025-06-11 08:55:47 +08:00
|
|
|
impl<'a> RopeGraphemes<'a> {
|
|
|
|
#[allow(clippy::should_implement_trait)]
|
|
|
|
pub fn next(&mut self) -> Option<RopeSlice<'a>> {
|
|
|
|
if self.is_reversed {
|
|
|
|
self.prev_impl()
|
|
|
|
} else {
|
|
|
|
self.next_impl()
|
|
|
|
}
|
|
|
|
}
|
2025-01-27 09:58:27 +08:00
|
|
|
|
2025-06-11 08:55:47 +08:00
|
|
|
pub fn prev(&mut self) -> Option<RopeSlice<'a>> {
|
|
|
|
if self.is_reversed {
|
|
|
|
self.next_impl()
|
|
|
|
} else {
|
|
|
|
self.prev_impl()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn reverse(&mut self) {
|
|
|
|
self.is_reversed = !self.is_reversed;
|
|
|
|
}
|
|
|
|
|
|
|
|
#[must_use]
|
|
|
|
pub fn reversed(mut self) -> Self {
|
|
|
|
self.reverse();
|
|
|
|
self
|
|
|
|
}
|
|
|
|
|
|
|
|
fn next_impl(&mut self) -> Option<RopeSlice<'a>> {
|
2025-01-27 09:58:27 +08:00
|
|
|
let a = self.cursor.cur_cursor();
|
|
|
|
let b;
|
|
|
|
loop {
|
|
|
|
match self
|
|
|
|
.cursor
|
2025-06-11 08:55:47 +08:00
|
|
|
.next_boundary(self.current_chunk, self.chunk_byte_idx)
|
2025-01-27 09:58:27 +08:00
|
|
|
{
|
2025-06-11 08:55:47 +08:00
|
|
|
Ok(None) => return None,
|
|
|
|
Ok(Some(boundary)) => {
|
|
|
|
b = boundary;
|
2025-01-27 09:58:27 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
Err(GraphemeIncomplete::NextChunk) => {
|
2025-06-11 08:55:47 +08:00
|
|
|
self.chunk_byte_idx += self.current_chunk.len();
|
|
|
|
self.current_chunk = self.chunks.next().unwrap_or("");
|
2025-01-27 09:58:27 +08:00
|
|
|
}
|
|
|
|
Err(GraphemeIncomplete::PreContext(idx)) => {
|
|
|
|
let (chunk, byte_idx, _, _) = self.text.chunk_at_byte(idx.saturating_sub(1));
|
|
|
|
self.cursor.provide_context(chunk, byte_idx);
|
|
|
|
}
|
|
|
|
_ => unreachable!(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2025-06-11 08:55:47 +08:00
|
|
|
if a < self.chunk_byte_idx {
|
2025-01-27 09:58:27 +08:00
|
|
|
Some(self.text.byte_slice(a..b))
|
|
|
|
} else {
|
2025-06-11 08:55:47 +08:00
|
|
|
let a2 = a - self.chunk_byte_idx;
|
|
|
|
let b2 = b - self.chunk_byte_idx;
|
|
|
|
Some((&self.current_chunk[a2..b2]).into())
|
2025-01-27 09:58:27 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2025-06-11 08:55:47 +08:00
|
|
|
fn prev_impl(&mut self) -> Option<RopeSlice<'a>> {
|
2025-01-27 09:58:27 +08:00
|
|
|
let a = self.cursor.cur_cursor();
|
|
|
|
let b;
|
|
|
|
loop {
|
|
|
|
match self
|
|
|
|
.cursor
|
2025-06-11 08:55:47 +08:00
|
|
|
.prev_boundary(self.current_chunk, self.chunk_byte_idx)
|
2025-01-27 09:58:27 +08:00
|
|
|
{
|
2025-06-11 08:55:47 +08:00
|
|
|
Ok(None) => return None,
|
|
|
|
Ok(Some(boundary)) => {
|
|
|
|
b = boundary;
|
2025-01-27 09:58:27 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
Err(GraphemeIncomplete::PrevChunk) => {
|
2025-06-11 08:55:47 +08:00
|
|
|
self.current_chunk = self.chunks.prev().unwrap_or("");
|
|
|
|
self.chunk_byte_idx -= self.current_chunk.len();
|
2025-01-27 09:58:27 +08:00
|
|
|
}
|
|
|
|
Err(GraphemeIncomplete::PreContext(idx)) => {
|
|
|
|
let (chunk, byte_idx, _, _) = self.text.chunk_at_byte(idx.saturating_sub(1));
|
|
|
|
self.cursor.provide_context(chunk, byte_idx);
|
|
|
|
}
|
|
|
|
_ => unreachable!(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2025-06-11 08:55:47 +08:00
|
|
|
if a >= self.chunk_byte_idx + self.current_chunk.len() {
|
2025-01-27 09:58:27 +08:00
|
|
|
Some(self.text.byte_slice(b..a))
|
|
|
|
} else {
|
2025-06-11 08:55:47 +08:00
|
|
|
let a2 = a - self.chunk_byte_idx;
|
|
|
|
let b2 = b - self.chunk_byte_idx;
|
|
|
|
Some((&self.current_chunk[b2..a2]).into())
|
2025-01-27 09:58:27 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2025-06-11 08:55:47 +08:00
|
|
|
impl<'a> Iterator for RopeGraphemes<'a> {
|
|
|
|
type Item = RopeSlice<'a>;
|
|
|
|
|
|
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
|
|
RopeGraphemes::next(self)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-04-10 23:14:08 +08:00
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
|
|
|
use ropey::RopeSlice;
|
|
|
|
|
|
|
|
use crate::rope::RopeSliceExt;
|
|
|
|
|
2024-09-21 22:05:17 +08:00
|
|
|
#[test]
|
|
|
|
fn starts_with() {
|
|
|
|
assert!(RopeSlice::from("asdf").starts_with("a"));
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn ends_with() {
|
|
|
|
assert!(RopeSlice::from("asdf").ends_with("f"));
|
|
|
|
}
|
2025-01-26 02:36:20 +08:00
|
|
|
|
|
|
|
#[test]
|
2025-01-27 05:52:29 +08:00
|
|
|
fn char_boundaries() {
|
2025-01-26 02:36:20 +08:00
|
|
|
let ascii = RopeSlice::from("ascii");
|
|
|
|
// When the given index lies on a character boundary, the index should not change.
|
|
|
|
for byte_idx in 0..=ascii.len_bytes() {
|
|
|
|
assert_eq!(ascii.floor_char_boundary(byte_idx), byte_idx);
|
|
|
|
assert_eq!(ascii.ceil_char_boundary(byte_idx), byte_idx);
|
2025-01-27 05:52:29 +08:00
|
|
|
assert!(ascii.is_char_boundary(byte_idx));
|
2025-01-26 02:36:20 +08:00
|
|
|
}
|
2025-01-27 00:02:14 +08:00
|
|
|
|
|
|
|
// This is a polyfill of a method of this trait which was replaced by ceil_char_boundary.
|
|
|
|
// It returns the _character index_ of the given byte index, rounding up if it does not
|
|
|
|
// already lie on a character boundary.
|
|
|
|
fn byte_to_next_char(slice: RopeSlice, byte_idx: usize) -> usize {
|
|
|
|
slice.byte_to_char(slice.ceil_char_boundary(byte_idx))
|
|
|
|
}
|
|
|
|
|
|
|
|
for i in 0..=6 {
|
|
|
|
assert_eq!(byte_to_next_char(RopeSlice::from("foobar"), i), i);
|
|
|
|
}
|
|
|
|
for char_idx in 0..10 {
|
|
|
|
let len = "😆".len();
|
|
|
|
assert_eq!(
|
|
|
|
byte_to_next_char(RopeSlice::from("😆😆😆😆😆😆😆😆😆😆"), char_idx * len),
|
|
|
|
char_idx
|
|
|
|
);
|
|
|
|
for i in 1..=len {
|
|
|
|
assert_eq!(
|
|
|
|
byte_to_next_char(RopeSlice::from("😆😆😆😆😆😆😆😆😆😆"), char_idx * len + i),
|
|
|
|
char_idx + 1
|
|
|
|
);
|
|
|
|
}
|
|
|
|
}
|
2025-01-26 02:36:20 +08:00
|
|
|
}
|
2025-01-27 05:52:29 +08:00
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn grapheme_boundaries() {
|
|
|
|
let ascii = RopeSlice::from("ascii");
|
|
|
|
// When the given index lies on a grapheme boundary, the index should not change.
|
|
|
|
for byte_idx in 0..=ascii.len_bytes() {
|
|
|
|
assert_eq!(ascii.floor_char_boundary(byte_idx), byte_idx);
|
|
|
|
assert_eq!(ascii.ceil_char_boundary(byte_idx), byte_idx);
|
|
|
|
assert!(ascii.is_grapheme_boundary(byte_idx));
|
|
|
|
}
|
|
|
|
|
|
|
|
// 🏴☠️: U+1F3F4 U+200D U+2620 U+FE0F
|
|
|
|
// 13 bytes, hex: f0 9f 8f b4 + e2 80 8d + e2 98 a0 + ef b8 8f
|
|
|
|
let g = RopeSlice::from("🏴☠️\r\n");
|
|
|
|
let emoji_len = "🏴☠️".len();
|
|
|
|
let end = g.len_bytes();
|
|
|
|
|
|
|
|
for byte_idx in 0..emoji_len {
|
|
|
|
assert_eq!(g.floor_grapheme_boundary(byte_idx), 0);
|
|
|
|
}
|
|
|
|
for byte_idx in emoji_len..end {
|
|
|
|
assert_eq!(g.floor_grapheme_boundary(byte_idx), emoji_len);
|
|
|
|
}
|
|
|
|
assert_eq!(g.floor_grapheme_boundary(end), end);
|
|
|
|
|
|
|
|
assert_eq!(g.ceil_grapheme_boundary(0), 0);
|
|
|
|
for byte_idx in 1..=emoji_len {
|
|
|
|
assert_eq!(g.ceil_grapheme_boundary(byte_idx), emoji_len);
|
|
|
|
}
|
|
|
|
for byte_idx in emoji_len + 1..=end {
|
|
|
|
assert_eq!(g.ceil_grapheme_boundary(byte_idx), end);
|
|
|
|
}
|
|
|
|
|
|
|
|
assert!(g.is_grapheme_boundary(0));
|
|
|
|
assert!(g.is_grapheme_boundary(emoji_len));
|
|
|
|
assert!(g.is_grapheme_boundary(end));
|
|
|
|
for byte_idx in (1..emoji_len).chain(emoji_len + 1..end) {
|
|
|
|
assert!(!g.is_grapheme_boundary(byte_idx));
|
|
|
|
}
|
|
|
|
}
|
2023-12-01 07:03:27 +08:00
|
|
|
}
|