helix/helix-stdx/src/rope.rs

587 lines
21 KiB
Rust
Raw Normal View History

use std::fmt;
2024-02-26 15:45:20 +08:00
use std::ops::{Bound, RangeBounds};
pub use regex_cursor::engines::meta::{Builder as RegexBuilder, Regex};
pub use regex_cursor::regex_automata::util::syntax::Config;
use regex_cursor::{Input as RegexInput, RopeyCursor};
use ropey::iter::Chunks;
use ropey::RopeSlice;
use unicode_segmentation::{GraphemeCursor, GraphemeIncomplete};
2024-02-26 15:45:20 +08:00
pub trait RopeSliceExt<'a>: Sized {
fn ends_with(self, text: &str) -> bool;
fn starts_with(self, text: &str) -> bool;
2024-02-26 15:45:20 +08:00
fn regex_input(self) -> RegexInput<RopeyCursor<'a>>;
fn regex_input_at_bytes<R: RangeBounds<usize>>(
self,
byte_range: R,
) -> RegexInput<RopeyCursor<'a>>;
fn regex_input_at<R: RangeBounds<usize>>(self, char_range: R) -> RegexInput<RopeyCursor<'a>>;
2024-02-27 21:36:25 +08:00
fn first_non_whitespace_char(self) -> Option<usize>;
fn last_non_whitespace_char(self) -> Option<usize>;
/// Finds the closest byte index not exceeding `byte_idx` which lies on a character boundary.
///
/// If `byte_idx` already lies on a character boundary then it is returned as-is. When
/// `byte_idx` lies between two character boundaries, this function returns the byte index of
/// the lesser / earlier / left-hand-side boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("⌚"); // three bytes: e2 8c 9a
/// assert_eq!(text.floor_char_boundary(0), 0);
/// assert_eq!(text.floor_char_boundary(1), 0);
/// assert_eq!(text.floor_char_boundary(2), 0);
/// assert_eq!(text.floor_char_boundary(3), 3);
/// ```
fn floor_char_boundary(self, byte_idx: usize) -> usize;
/// Finds the closest byte index not below `byte_idx` which lies on a character boundary.
///
/// If `byte_idx` already lies on a character boundary then it is returned as-is. When
/// `byte_idx` lies between two character boundaries, this function returns the byte index of
/// the greater / later / right-hand-side boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("⌚"); // three bytes: e2 8c 9a
/// assert_eq!(text.ceil_char_boundary(0), 0);
/// assert_eq!(text.ceil_char_boundary(1), 3);
/// assert_eq!(text.ceil_char_boundary(2), 3);
/// assert_eq!(text.ceil_char_boundary(3), 3);
/// ```
fn ceil_char_boundary(self, byte_idx: usize) -> usize;
/// Checks whether the given `byte_idx` lies on a character boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("⌚"); // three bytes: e2 8c 9a
/// assert!(text.is_char_boundary(0));
/// assert!(!text.is_char_boundary(1));
/// assert!(!text.is_char_boundary(2));
/// assert!(text.is_char_boundary(3));
/// ```
#[allow(clippy::wrong_self_convention)]
fn is_char_boundary(self, byte_idx: usize) -> bool;
/// Finds the closest byte index not exceeding `byte_idx` which lies on a grapheme cluster
/// boundary.
///
/// If `byte_idx` already lies on a grapheme cluster boundary then it is returned as-is. When
/// `byte_idx` lies between two grapheme cluster boundaries, this function returns the byte
/// index of the lesser / earlier / left-hand-side boundary.
///
/// `byte_idx` does not need to be aligned to a character boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("\r\n"); // U+000D U+000A, hex: 0d 0a
/// assert_eq!(text.floor_grapheme_boundary(0), 0);
/// assert_eq!(text.floor_grapheme_boundary(1), 0);
/// assert_eq!(text.floor_grapheme_boundary(2), 2);
/// ```
fn floor_grapheme_boundary(self, byte_idx: usize) -> usize;
/// Finds the closest byte index not exceeding `byte_idx` which lies on a grapheme cluster
/// boundary.
///
/// If `byte_idx` already lies on a grapheme cluster boundary then it is returned as-is. When
/// `byte_idx` lies between two grapheme cluster boundaries, this function returns the byte
/// index of the greater / later / right-hand-side boundary.
///
/// `byte_idx` does not need to be aligned to a character boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("\r\n"); // U+000D U+000A, hex: 0d 0a
/// assert_eq!(text.ceil_grapheme_boundary(0), 0);
/// assert_eq!(text.ceil_grapheme_boundary(1), 2);
/// assert_eq!(text.ceil_grapheme_boundary(2), 2);
/// ```
fn ceil_grapheme_boundary(self, byte_idx: usize) -> usize;
/// Checks whether the `byte_idx` lies on a grapheme cluster boundary.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("\r\n"); // U+000D U+000A, hex: 0d 0a
/// assert!(text.is_grapheme_boundary(0));
/// assert!(!text.is_grapheme_boundary(1));
/// assert!(text.is_grapheme_boundary(2));
/// ```
#[allow(clippy::wrong_self_convention)]
fn is_grapheme_boundary(self, byte_idx: usize) -> bool;
/// Returns an iterator over the grapheme clusters in the slice.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("😶‍🌫️🏴‍☠️🖼️");
/// let graphemes: Vec<_> = text.graphemes().collect();
/// assert_eq!(graphemes.as_slice(), &["😶‍🌫️", "🏴‍☠️", "🖼️"]);
/// ```
fn graphemes(self) -> RopeGraphemes<'a>;
/// Returns an iterator over the grapheme clusters in the slice, reversed.
///
/// The returned iterator starts at the end of the slice and ends at the beginning of the
/// slice.
///
/// # Example
///
/// ```
/// # use ropey::RopeSlice;
/// # use helix_stdx::rope::RopeSliceExt;
/// let text = RopeSlice::from("😶‍🌫️🏴‍☠️🖼️");
/// let graphemes: Vec<_> = text.graphemes_rev().collect();
/// assert_eq!(graphemes.as_slice(), &["🖼️", "🏴‍☠️", "😶‍🌫️"]);
/// ```
fn graphemes_rev(self) -> RevRopeGraphemes<'a>;
}
2024-02-26 15:45:20 +08:00
impl<'a> RopeSliceExt<'a> for RopeSlice<'a> {
fn ends_with(self, text: &str) -> bool {
let len = self.len_bytes();
if len < text.len() {
return false;
}
self.get_byte_slice(len - text.len()..)
2025-01-10 01:02:21 +08:00
.is_some_and(|end| end == text)
}
fn starts_with(self, text: &str) -> bool {
let len = self.len_bytes();
if len < text.len() {
return false;
}
self.get_byte_slice(..text.len())
2025-01-10 01:02:21 +08:00
.is_some_and(|start| start == text)
}
2024-02-26 15:45:20 +08:00
fn regex_input(self) -> RegexInput<RopeyCursor<'a>> {
RegexInput::new(self)
}
fn regex_input_at<R: RangeBounds<usize>>(self, char_range: R) -> RegexInput<RopeyCursor<'a>> {
let start_bound = match char_range.start_bound() {
Bound::Included(&val) => Bound::Included(self.char_to_byte(val)),
Bound::Excluded(&val) => Bound::Excluded(self.char_to_byte(val)),
Bound::Unbounded => Bound::Unbounded,
};
let end_bound = match char_range.end_bound() {
Bound::Included(&val) => Bound::Included(self.char_to_byte(val)),
Bound::Excluded(&val) => Bound::Excluded(self.char_to_byte(val)),
Bound::Unbounded => Bound::Unbounded,
};
self.regex_input_at_bytes((start_bound, end_bound))
}
fn regex_input_at_bytes<R: RangeBounds<usize>>(
self,
byte_range: R,
) -> RegexInput<RopeyCursor<'a>> {
let input = match byte_range.start_bound() {
Bound::Included(&pos) | Bound::Excluded(&pos) => {
RegexInput::new(RopeyCursor::at(self, pos))
}
Bound::Unbounded => RegexInput::new(self),
};
input.range(byte_range)
}
2024-02-27 21:36:25 +08:00
fn first_non_whitespace_char(self) -> Option<usize> {
self.chars().position(|ch| !ch.is_whitespace())
}
fn last_non_whitespace_char(self) -> Option<usize> {
self.chars_at(self.len_chars())
.reversed()
.position(|ch| !ch.is_whitespace())
.map(|pos| self.len_chars() - pos - 1)
}
// These three are adapted from std:
fn floor_char_boundary(self, byte_idx: usize) -> usize {
if byte_idx >= self.len_bytes() {
self.len_bytes()
} else {
let offset = self
.bytes_at(byte_idx + 1)
.reversed()
.take(4)
.position(is_utf8_char_boundary)
// A char can only be four bytes long so we are guaranteed to find a boundary.
.unwrap();
byte_idx - offset
}
}
fn ceil_char_boundary(self, byte_idx: usize) -> usize {
if byte_idx > self.len_bytes() {
self.len_bytes()
} else {
let upper_bound = self.len_bytes().min(byte_idx + 4);
self.bytes_at(byte_idx)
.position(is_utf8_char_boundary)
.map_or(upper_bound, |pos| pos + byte_idx)
}
}
fn is_char_boundary(self, byte_idx: usize) -> bool {
if byte_idx == 0 {
return true;
}
if byte_idx >= self.len_bytes() {
byte_idx == self.len_bytes()
} else {
is_utf8_char_boundary(self.bytes_at(byte_idx).next().unwrap())
}
}
fn floor_grapheme_boundary(self, mut byte_idx: usize) -> usize {
if byte_idx >= self.len_bytes() {
return self.len_bytes();
}
byte_idx = self.ceil_char_boundary(byte_idx + 1);
let (mut chunk, mut chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
let mut cursor = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
loop {
match cursor.prev_boundary(chunk, chunk_byte_idx) {
Ok(None) => return 0,
Ok(Some(boundary)) => return boundary,
Err(GraphemeIncomplete::PrevChunk) => {
let (ch, ch_byte_idx, _, _) = self.chunk_at_byte(chunk_byte_idx - 1);
chunk = ch;
chunk_byte_idx = ch_byte_idx;
}
Err(GraphemeIncomplete::PreContext(n)) => {
let ctx_chunk = self.chunk_at_byte(n - 1).0;
cursor.provide_context(ctx_chunk, n - ctx_chunk.len());
}
_ => unreachable!(),
}
}
}
fn ceil_grapheme_boundary(self, mut byte_idx: usize) -> usize {
if byte_idx >= self.len_bytes() {
return self.len_bytes();
}
if byte_idx == 0 {
return 0;
}
byte_idx = self.floor_char_boundary(byte_idx - 1);
let (mut chunk, mut chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
let mut cursor = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
loop {
match cursor.next_boundary(chunk, chunk_byte_idx) {
Ok(None) => return self.len_bytes(),
Ok(Some(boundary)) => return boundary,
Err(GraphemeIncomplete::NextChunk) => {
chunk_byte_idx += chunk.len();
chunk = self.chunk_at_byte(chunk_byte_idx).0;
}
Err(GraphemeIncomplete::PreContext(n)) => {
let ctx_chunk = self.chunk_at_byte(n - 1).0;
cursor.provide_context(ctx_chunk, n - ctx_chunk.len());
}
_ => unreachable!(),
}
}
}
fn is_grapheme_boundary(self, byte_idx: usize) -> bool {
// The byte must lie on a character boundary to lie on a grapheme cluster boundary.
if !self.is_char_boundary(byte_idx) {
return false;
}
let (chunk, chunk_byte_idx, _, _) = self.chunk_at_byte(byte_idx);
let mut cursor = GraphemeCursor::new(byte_idx, self.len_bytes(), true);
loop {
match cursor.is_boundary(chunk, chunk_byte_idx) {
Ok(n) => return n,
Err(GraphemeIncomplete::PreContext(n)) => {
let (ctx_chunk, ctx_byte_start, _, _) = self.chunk_at_byte(n - 1);
cursor.provide_context(ctx_chunk, ctx_byte_start);
}
Err(_) => unreachable!(),
}
}
}
fn graphemes(self) -> RopeGraphemes<'a> {
let mut chunks = self.chunks();
let first_chunk = chunks.next().unwrap_or("");
RopeGraphemes {
text: self,
chunks,
cur_chunk: first_chunk,
cur_chunk_start: 0,
cursor: GraphemeCursor::new(0, self.len_bytes(), true),
}
}
fn graphemes_rev(self) -> RevRopeGraphemes<'a> {
let (mut chunks, mut cur_chunk_start, _, _) = self.chunks_at_byte(self.len_bytes());
chunks.reverse();
let first_chunk = chunks.next().unwrap_or("");
cur_chunk_start -= first_chunk.len();
RevRopeGraphemes {
text: self,
chunks,
cur_chunk: first_chunk,
cur_chunk_start,
cursor: GraphemeCursor::new(self.len_bytes(), self.len_bytes(), true),
}
}
}
// copied from std
#[inline]
const fn is_utf8_char_boundary(b: u8) -> bool {
// This is bit magic equivalent to: b < 128 || b >= 192
(b as i8) >= -0x40
}
/// An iterator over the graphemes of a `RopeSlice`.
#[derive(Clone)]
pub struct RopeGraphemes<'a> {
text: RopeSlice<'a>,
chunks: Chunks<'a>,
cur_chunk: &'a str,
cur_chunk_start: usize,
cursor: GraphemeCursor,
}
impl fmt::Debug for RopeGraphemes<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RopeGraphemes")
.field("text", &self.text)
.field("chunks", &self.chunks)
.field("cur_chunk", &self.cur_chunk)
.field("cur_chunk_start", &self.cur_chunk_start)
// .field("cursor", &self.cursor)
.finish()
}
}
impl<'a> Iterator for RopeGraphemes<'a> {
type Item = RopeSlice<'a>;
fn next(&mut self) -> Option<Self::Item> {
let a = self.cursor.cur_cursor();
let b;
loop {
match self
.cursor
.next_boundary(self.cur_chunk, self.cur_chunk_start)
{
Ok(None) => {
return None;
}
Ok(Some(n)) => {
b = n;
break;
}
Err(GraphemeIncomplete::NextChunk) => {
self.cur_chunk_start += self.cur_chunk.len();
self.cur_chunk = self.chunks.next().unwrap_or("");
}
Err(GraphemeIncomplete::PreContext(idx)) => {
let (chunk, byte_idx, _, _) = self.text.chunk_at_byte(idx.saturating_sub(1));
self.cursor.provide_context(chunk, byte_idx);
}
_ => unreachable!(),
}
}
if a < self.cur_chunk_start {
Some(self.text.byte_slice(a..b))
} else {
let a2 = a - self.cur_chunk_start;
let b2 = b - self.cur_chunk_start;
Some((&self.cur_chunk[a2..b2]).into())
}
}
}
/// An iterator over the graphemes of a `RopeSlice` in reverse.
#[derive(Clone)]
pub struct RevRopeGraphemes<'a> {
text: RopeSlice<'a>,
chunks: Chunks<'a>,
cur_chunk: &'a str,
cur_chunk_start: usize,
cursor: GraphemeCursor,
}
impl fmt::Debug for RevRopeGraphemes<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RevRopeGraphemes")
.field("text", &self.text)
.field("chunks", &self.chunks)
.field("cur_chunk", &self.cur_chunk)
.field("cur_chunk_start", &self.cur_chunk_start)
// .field("cursor", &self.cursor)
.finish()
}
}
impl<'a> Iterator for RevRopeGraphemes<'a> {
type Item = RopeSlice<'a>;
fn next(&mut self) -> Option<Self::Item> {
let a = self.cursor.cur_cursor();
let b;
loop {
match self
.cursor
.prev_boundary(self.cur_chunk, self.cur_chunk_start)
{
Ok(None) => {
return None;
}
Ok(Some(n)) => {
b = n;
break;
}
Err(GraphemeIncomplete::PrevChunk) => {
self.cur_chunk = self.chunks.next().unwrap_or("");
self.cur_chunk_start -= self.cur_chunk.len();
}
Err(GraphemeIncomplete::PreContext(idx)) => {
let (chunk, byte_idx, _, _) = self.text.chunk_at_byte(idx.saturating_sub(1));
self.cursor.provide_context(chunk, byte_idx);
}
_ => unreachable!(),
}
}
if a >= self.cur_chunk_start + self.cur_chunk.len() {
Some(self.text.byte_slice(b..a))
} else {
let a2 = a - self.cur_chunk_start;
let b2 = b - self.cur_chunk_start;
Some((&self.cur_chunk[b2..a2]).into())
}
}
}
#[cfg(test)]
mod tests {
use ropey::RopeSlice;
use crate::rope::RopeSliceExt;
#[test]
fn starts_with() {
assert!(RopeSlice::from("asdf").starts_with("a"));
}
#[test]
fn ends_with() {
assert!(RopeSlice::from("asdf").ends_with("f"));
}
#[test]
fn char_boundaries() {
let ascii = RopeSlice::from("ascii");
// When the given index lies on a character boundary, the index should not change.
for byte_idx in 0..=ascii.len_bytes() {
assert_eq!(ascii.floor_char_boundary(byte_idx), byte_idx);
assert_eq!(ascii.ceil_char_boundary(byte_idx), byte_idx);
assert!(ascii.is_char_boundary(byte_idx));
}
// This is a polyfill of a method of this trait which was replaced by ceil_char_boundary.
// It returns the _character index_ of the given byte index, rounding up if it does not
// already lie on a character boundary.
fn byte_to_next_char(slice: RopeSlice, byte_idx: usize) -> usize {
slice.byte_to_char(slice.ceil_char_boundary(byte_idx))
}
for i in 0..=6 {
assert_eq!(byte_to_next_char(RopeSlice::from("foobar"), i), i);
}
for char_idx in 0..10 {
let len = "😆".len();
assert_eq!(
byte_to_next_char(RopeSlice::from("😆😆😆😆😆😆😆😆😆😆"), char_idx * len),
char_idx
);
for i in 1..=len {
assert_eq!(
byte_to_next_char(RopeSlice::from("😆😆😆😆😆😆😆😆😆😆"), char_idx * len + i),
char_idx + 1
);
}
}
}
#[test]
fn grapheme_boundaries() {
let ascii = RopeSlice::from("ascii");
// When the given index lies on a grapheme boundary, the index should not change.
for byte_idx in 0..=ascii.len_bytes() {
assert_eq!(ascii.floor_char_boundary(byte_idx), byte_idx);
assert_eq!(ascii.ceil_char_boundary(byte_idx), byte_idx);
assert!(ascii.is_grapheme_boundary(byte_idx));
}
// 🏴‍☠️: U+1F3F4 U+200D U+2620 U+FE0F
// 13 bytes, hex: f0 9f 8f b4 + e2 80 8d + e2 98 a0 + ef b8 8f
let g = RopeSlice::from("🏴‍☠️\r\n");
let emoji_len = "🏴‍☠️".len();
let end = g.len_bytes();
for byte_idx in 0..emoji_len {
assert_eq!(g.floor_grapheme_boundary(byte_idx), 0);
}
for byte_idx in emoji_len..end {
assert_eq!(g.floor_grapheme_boundary(byte_idx), emoji_len);
}
assert_eq!(g.floor_grapheme_boundary(end), end);
assert_eq!(g.ceil_grapheme_boundary(0), 0);
for byte_idx in 1..=emoji_len {
assert_eq!(g.ceil_grapheme_boundary(byte_idx), emoji_len);
}
for byte_idx in emoji_len + 1..=end {
assert_eq!(g.ceil_grapheme_boundary(byte_idx), end);
}
assert!(g.is_grapheme_boundary(0));
assert!(g.is_grapheme_boundary(emoji_len));
assert!(g.is_grapheme_boundary(end));
for byte_idx in (1..emoji_len).chain(emoji_len + 1..end) {
assert!(!g.is_grapheme_boundary(byte_idx));
}
}
}